Nathan Lichtlé

PhD in Deep Learning, UC Berkeley

nathanlichtle.com / lichtle@berkeley.edu

Education

University of California, Berkeley (Expected 08/25)
Ph.D., M.S., EECS, Berkeley AI Research (GPA 4.0)
École Nationale des Ponts et Chaussées, Institut Polytechnique de Paris.
Ph.D., Mathematics
École Normale Supérieure Paris-Saclay, Paris-Saclay University.
M.S., Computer Science (MVA Master)

Skills

LanguagesPython, C, C++, JavaScript, SQL, BashFrameworksPyTorch, RLlib, SB3, CleanRL, Gym, OpenAI API, LangChain, LangGraph, ONNX, SUMO, raylibInfrastructureAWS (EC2/S3), Azure, SLURM, W&B, Docker, Git, Linux

Research & Engineering Experience

Research: 16 articles (13 first-author), incl. NeurIPS, T-RO, TCPS, CSM, ITSC, ICRA; ICML under review; full list on website

CIRCLES: World's Largest RL-Driven Traffic Smoothing Field Test (100 Cars) Collaboration with Toyota, Nissan, General Motors	2020 – 2024 [code]
• Led the end-to-end design, training, validation, and deployment of RL controllers that drove 100 autonor the largest-ever traffic smoothing experiment, conducted on a live highway during rush hours	nous vehicles in
• Built the core data-based simulation framework and evaluation benchmarks used across the project, coor 50+ researchers and industry partners to ensure safety, robustness, and scalability of deployed controller	dinating with s
• Analyzed field data showing 10–20% energy savings near our AVs, which represented only 1–2% of total	traffic
 Largest-Ever Comparison of Deep RL Methods in Imperfect-Information Games Developed self-play RL benchmarks and ran 5,600+ hyperparameter sweeps across 4 large games Found that properly tuned policy gradient algorithms outperform specialized game-theoretic methods 	2024 – 2025 [code]
 Autoregressive CNNs for Sequential Traffic Prediction Trained CNNs to forecast traffic over long horizons by integrating hyperbolic PDEs with highway data Achieved 2–3x better accuracy than traditional numerical methods on large-scale benchmarks 	2024 – 2025
 Nocturne: Goal-Based 2D Driving Benchmark with Partial Observability Collaboration with Meta AI Built a fast C++ driving simulator with human-like partial observability and Python bindings for RL Created a large open-source benchmark with challenging coordination tasks from Waymo traffic data Achieved a 75% goal-reaching rate using decentralized multi-agent PPO with shared policies 	2021 – 2022 [code]

Awards & Honors

University of California, Berkeley	2022 - 2023
École des Ponts ParisTech	2021 - 2022
ENS Paris-Saclay	2017 - 2021
	2020
	2018
	2018
	University of California, Berkeley École des Ponts ParisTech ENS Paris-Saclay

Talks, Media & Outreach

Invited speaker, Traffic and Autonomy Conference (Maiori, Italy)
Podcast guest, INGENIUS ENPC, "Autonomous Driving for Traffic Flow Optimization"
Press: CIRCLES work featured in Fortune, AP News, Popular Science, PR Newswire, TechXplore, CNRS, etc
Poster presentations: NeurIPS 2023, NeurIPS 2022 (Math-AI), ICRA 2022, ITSC 2021

2022 – Present Expected Aug 2025 2021 – 2024 Graduated Dec 2024 2017 – 2021

> June 2023 Feb 2023